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I
n recent years, the semidefinite relaxation (SDR) technique has been at 
the center of some of very exciting developments in the area of signal 
processing and communications, and it has shown great signifi-
cance and relevance on a variety of applications. Roughly speak-
ing, SDR is a powerful, computationally efficient approximation 

technique for a host of very difficult optimization problems. In 
particular, it can be applied to many nonconvex quadratically 
constrained quadratic programs (QCQPs) in an almost 
mechanical fashion, including the following problem: 

min
x[Rn        

xTCx

s.t. xTFi x $ gi, i5 1, c, p,

xTHi x5 li, i5 1, c, q, (1)

where the given matrices C, F1, c, Fp, H1, c, Hq are 
assumed to be general real symmetric matrices, possibly 
indefinite. The class of nonconvex QCQPs (1) captures 
many problems that are of interest to the signal process-
ing and communications community. For instance, con-
sider the Boolean quadratic program (BQP) 

min
x[Rn       

xTCx

s.t. xi
2 5 1,  i5 1, c, n. (2)

The BQP is long known to be a computationally difficult prob-
lem. In particular, it belongs to the class of NP-hard problems. 
Nevertheless, being able to handle the BQP well has an enormous 
impact on multiple-input, multiple-output (MIMO) detection and 
multiuser detection. Another important yet NP-hard problem in the 
nonconvex QCQP class (1) is 
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min
x[Rn xTCx

s.t. xTFi x $ 1,  i5 1, c, m,  (3)

where C, F1, c, Fm are all positive semidefinite. Problem (3) 
captures the multicast downlink transmit beamforming prob-
lem; see [1] for details. An illustration of an instance of (3) is 
provided in Figure 1. As seen from the figure, the feasible set of 
(3) is the intersection of the exteriors of multiple ellipsoids, 
which makes the problem difficult. 

As a matter of fact, SDR has been studied and applied in the 
optimization community long before it made its impact on sig-
nal processing and communications. The idea of SDR can be 
found in an early paper of Lovász in 1979 [2], but it was argu-
ably the seminal work of Goemans and Williamson in 1995 [3] 
that sparked the significant interest in and rapid development of 
SDR techniques. In that work, it was shown that SDR can be 
used to provide an approximation accuracy of no worse than 
0.8756 for the maximum cut problem (the BQP with some con-
ditions on C). In other words, even though the maximum cut 
problem is NP-hard, one could efficiently obtain a solution 
whose objective value is at least 0.8756 times the optimal value 
using SDR. Since then, we have seen a number of dedicated the-
oretical analyses that establish the SDR approximation accuracy 
under different problem settings [3]–[11] and that have greatly 
improved our understanding of the capabilities of SDR. Today, 
we are even able to pin down a number of conditions under 
which SDR provides an exact optimal solution to the original 
problem [7], [12]–[16].

INTRODUCTION
The introduction of SDR in the early 2000s has reshaped the 
way we see many topics today in the field of signal processing 
and communications. Many practical experiences have already 
indicated that SDR is capable of providing accurate (and some-
times near optimal) approximations. For instance, in MIMO 
detection, SDR is now known as an efficient high- performance 
approach [17]–[23] (see also [24]–[26] for blind MIMO detec-
tion). The promising empirical approximation performance of 
SDR has motivated new endeavors, leading to the creation of 
new research trends in some cases. One such example is in the 
area of transmit beamforming, which has attracted much recent 
interest; for a review of this exciting topic, please see the article 
by Gershman et al. [1] as well as [27]. The effectiveness of trans-
mit beamforming depends much on how well one can handle 
(often nonconvex) QCQPs and its technical progress could have 
been slower if SDR had not been known to the signal processing 
community. Another example worth mentioning is sensor net-
work localization, a practically important but technically chal-
lenging problem. SDR has proven to be an effective technique 
for tackling the sensor network localization problem, both in 
theory and practice [28]–[31]. In addition to the three major 
applications mentioned above, there are many other different 
applications of SDR, such as waveform design in radar [32], 
[33], phase unwrapping [34], robust blind beamforming [35], 
large-margin parameter estimation in speech recognition (see 

the article by Jiang and Li [36] for further details), transmit B1 
shim in MRI [37], and many more [38]–[41]. It is anticipated 
that SDR would find more applications in the near future. 

This article aims to give an overview of SDR, with an empha-
sis on showing the underlying intuitions and various applica-
tions of this powerful tool. In fact, we will soon see that the 
implementation of SDR can be very easy, which allows signal 
processing practitioners to quickly test the viability of SDR in 
their applications. Several highly successful applications will be 
showcased as examples. We will also endeavor to touch on some 
advanced, key theoretical results by highlighting their practical 
impacts and implications. 

THE CONCEPT OF SDR
To make the notation more concise, let us write our problem 
of interest, namely, the real-valued homogeneous QCQP in (1), 
as follows: 

 min
x[Rn     

xTCx

 s.t.    xTAi x xi bi,    i5 1, c, m.  (4)

Here, “x i” can represent either “ $ ,” “ 5 ,” or “ # ” for each 
i; C, A1 ,c,  Am [  Sn, where Sn denotes the set of all real 
symmetric n 3 n  matrices; and b1, c, bm [ R.  A crucial 
first step in deriving an SDR of (4) is to observe that 

 xTCx5 Tr 1xTCx 2 5 Tr 1CxxT 2 ,
 xTAi x5 Tr 1xTAi x 2 5 Tr 1Ai xxT 2 .
In particular, both the objective function and constraints in (4) 
are linear in the matrix xxT. Thus, by introducing a new variable 
X5 xxT  and noting that X5 xxT  is equivalent to X  being a 

[FIG1] A nonconvex QCQP in R2 : Colored lines represent the 
contour of the objective function, the gray area represents the 
feasible set, and the black lines represent the boundary of each 
constraint. 
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rank one symmetric positive semidefinite (PSD) matrix, we 
obtain the following equivalent formulation of (4): 

 min
X[Sn        

Tr 1CX 2
 s.t.     Tr 1Ai X 2  xi bi,   i5 1, c, m,
 X f 0, rank 1X 2 5 1. (5)

Here, we use X f 0 to indicate that X  is PSD. 
At this point, it may seem that we have not achieved much, 

as (5) is just as difficult to solve as (4). However, the formulation 
in (5) allows us to identify the fundamental difficulty in solving 
(4). Indeed, the only difficult constraint in (5) is the rank con-
straint rank 1X 2 5 1, which is nonconvex (the objective function 
and all other constraints are convex in X). Thus, we may as well 
drop it to obtain the following relaxed version of (4): 

 min
X[Sn        

Tr 1CX 2
 s.t.     Tr 1Ai X 2  xi bi,    i5 1, c, m,

 X f 0. (6)

Problem (6) is known as an SDR of (4), where the name stems 
from the fact that (6) is an instance of semidefinite program-
ming (SDP). The upshot of the formulation in (6) is that it 
can be solved, to any arbitrary accuracy, in a numerically reli-
able and efficient fashion. In fact, SDRs can now be handled 
very conveniently and effectively by readily available (and 
free) software packages. Let us give an example: Suppose that 
“x i” equals “$” for i5 1, c, p, and “x i” equals “5” for 
i5 p1 1, c, m. Using the convex optimization toolbox CVX 
[42], we can solve (6) in MATLAB with the code given in “A 
CVX Code for SDR.” 

While advances in convex optimization and software have 
enabled us to solve SDPs easily and transparently, one might 
question how effective the process is (how fast or slow it 
would be?). In the backstage most convex optimization tool-
boxes handle SDPs using an interior-point algorithm, a 
sophisticated topic in its own right (see, e.g., [43]). Simply 
speaking, the SDR problem (6) can be solved with a worst-
case complexity of 

 O 1max5m, n64n1/2log 11/P 2 2
given a solution accuracy P . 0. Our reported complexity 
order is obtained by counting the arithmetic operations of a 
specific interior-point method, namely the primal-dual path- 
following method in [44]. See [45] for a more detailed descrip-
tion on the operation count. The complexity above does not 
assume sparsity or any special structures in the data matrices 
C, A1, c, Am.  Some algorithms, such as SeDuMi  [46] 
(employed as one of the core solvers in CVX), can utilize data 
matrix sparsity to speed up the solution process. We also refer 
the readers to [47] for other fast real-time convex optimization 
solvers. For certain specially structured SDR problems, one 
can even exploit the problem structures to build fast custom-
ized interior-point algorithms. For example, for BQP, a cus-
tom-built interior-point algorithm [44] can solve SDR with a 
complexity of O 1n3.5log 11/P 2 2  [instead of O 1n4.5log 11/P 2 2 ]. 
Furthermore, the SDR complexity scales slowly (logarithmi-
cally) with P and most applications do not require a very high 
solution precision. Hence, simply speaking, we can say that 
SDR is a computationally efficient approximation approach to 
QCQP, in the sense that its complexity is polynomial in the 
problem size n and the number of constraints m. 

Of course, there is no free lunch in turning the NP-hard 
problem (4) [which is equivalent to (5)] into the polynomial-
time solvable problem (6). Indeed, a fundamental issue that 
one must address when using SDR is how to convert a globally 
optimal solution Xw to (6) into a feasible solution x| to (4). 
Now, if Xw is of rank one, then there is nothing to do, for we 
can write Xw5 xwxwT, and xw will be a feasible—and in fact 
optimal—solution to (4). On the other hand, if the rank of Xw 
is larger than one, then we must somehow extract from it, in 
an efficient manner, a vector x| that is feasible for (4). There 
are many ways to do this, and they generally follow some intu-
itively reasonable heuristics (true even in engineering sense). 
However, we must emphasize that even though the extracted 
solution is feasible for (4), it is in general not an optimal solu-
tion (for otherwise we would have solved an NP-hard problem 
in polynomial time). 

As an illustration, consider the intuitively appealing idea of 
applying a rank-one approximation on Xw. Specifically, let 
r5 rank 1Xw 2 , and let 

 Xw5 a
r

i51
li qi qi

T

denote the eigen-decomposition of Xw, where l1 $ l2 $ c

$ lr . 0  are the eigenvalues and q1, c, qr [ Rn  are the 
respective eigenvectors. Since the best rank-one approxima-
tion X1

w  to Xw  (in the least two-norm sense) is given by 
X1

w5l1q1q1
T, we may define x|5"l1q1 as our candidate solu-

tion to (4), provided that it is feasible. Otherwise, we can try to 
map x| to a “nearby” feasible solution x̂ of (4). In general, such 
a mapping is problem dependent, but it can be quite simple. 
For example, for the BQP (2) where xi

25 1 for all i, we can 
obtain a feasible solution from x|  via x̂5 sgn 1 x| 2 ,  where 

A CVX CODE FOR SDR 
cvx_begin 

  variable X(n,n) symmetric 

  minimize(trace(C*X)); 

  subject to 

    for i=1:p 

      trace(A(:,:,i)*X) >= b(i); 

    end 

    for i=p+1:m 

      trace(A(:,:,i)*X) == b(i); 

    end 

  X == semidefinite(n); 

cvx_end
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sgn 1 # 2  is the element-wise sig-
num function. 

Our basic description of 
SDR is now complete. Before 
we proceed, some remarks are 
in order.

Now that we have seen 1) 
one method of extracting a 
feasible solution x̂ to (4) from a solution Xw to the SDP (6), 
it is natural to ask what the quality of the extracted solution 
x̂ is. It turns out that there are several measures available to 
address this issue. Although we will not discuss them at this 
point, it should be emphasized that regardless of which mea-
sure we use, the quality will certainly depend on the method 
by which we extract the solution x̂. 

Apart from the rank relaxation interpretation of SDR as 2) 
described above, there is another interpretation that is based 
on Lagrangian duality. Specifically, it can be shown that the 
SDR (6) is a Lagrangian bidual of the original problem (4). 
We refer the reader to, e.g., [48] for details. 

APPLICATION: MIMO DETECTION
Let us show an example of SDR application before proceeding to 
further advanced concepts and applications. 

The problem we consider is MIMO detection, a frequently 
encountered problem in digital communications. To put it into 
context, consider a generic N-input M-output model 

 yC5HCsC1 vC. (7)

Here, yC [ CM  is the received vector, HC [ CM3N  is the 
MIMO channel, sC [ CN  is the transmitted symbol vector, 
and vC [ CM  is an additive white Gaussian noise vector. 
Equation (7) is popularly used to model point-to-point multi-
ple-antenna systems such as the spatial multiplexing (or 
V-BLAST) depicted in Figure 2. In fact, it is known (see, e.g., 
[49]) that the same model as in (7) can be used to formulate 
detection problems in many other communication scenarios, 
such as multiuser systems, space-time coding systems, space-
frequency coding systems, and combinations such as multius-
er multi-antenna systems. The wide applicability of the MIMO 
model (7) makes its respective detection problem attractive 
and important to tackle.

In this application example, we assume that the transmitted 
symbols follow a quaternary phase-shift-keying (QPSK) constel-
lation; i.e., sC,i [ 56 1 6 j6  for all i. We are interested in the 
maximum-likelihood (ML) MIMO detection, which is optimal in 
yielding the minimum error probability of detecting sC. It can 
be shown that the ML problem is equivalent to the discrete least 
squares problem 

 min
sC[5616 j6N  

7yC2HC sC 7 2, (8)

which is NP-hard [50]. Recent advances in MIMO detection have 
provided a practically efficient way of finding a globally optimal 

ML solution; viz., the sphere 
decoding methods [49]. Sphere 
decoding has been found to be 
computationally fast for small 
to moderate problem sizes, e.g., 
N # 20. However, it has been 
proven that the complexity of 
sphere decoding is exponential 

in N  even in an average sense [51]. 
On the other hand, SDR can be used to produce an approxi-

mate solution to the ML MIMO detection problem in O 1N 3.5 2  
time, which is polynomial in N. The trick is to turn (8) into a 
real-valued homogeneous QCQP. Indeed, by letting 

 y5 cR5yC6
I5yC6 d ,    s5 cR5sC6

I5sC6 d ,    H5 cR5HC6 2I5HC6
I5HC6 R5HC6 d ,

we can rewrite (8) as the following real-valued problem: 

 min
s[56162N 

7y2Hs 7 2. (9)

Problem (9) is not a homogeneous QCQP, but we can homoge-
nize it as follows: 

 min
s[R2 N, t[R     

7ty2Hs 7 2
 s.t.   t25 1, si

25 1, i5 1, c, 2N. (10)

Problem (10) is equivalent to (9) in the following sense: if 1xw, tw2  is an optimal solution to (10), then xw (respectively 
2 xw) is an optimal solution to (9) when tw5 1 (respectively
tw5 2 1). With the introduction of the extra variable t, (10) 
can then be expressed as a homogeneous QCQP:

 min
s[R2N, t[R

   3sT t 4 c HTH 2HTy
2 yTH  i  yi2

d cs
t
d

 s.t.  t25 1, si
25 1, i5 1, c, 2N. (11)

Subsequently, SDR can be applied. 
We now show some simulation results to illustrate how well 

SDR performs in practice. The simulation follows a standard 
MIMO setting (see, e.g., [49]), with problem size 1M, N 2 5 140, 40 2 . Note that for such a problem size, sphere 
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[FIG2] The spatial multiplexing system.
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decoding is computationally too slow to run in practice. We test-
ed other benchmarked MIMO detectors, such as the linear and 
decision-feedback detectors and the lattice-reduction-aided 
detectors. The results are plotted in Figure 3. We can see that 
SDR provides near-optimal bit error probability and gives notably 
better performance than other MIMO detectors under the test. 

In Figure 3, two performance curves are provided for SDR. 
The one labeled “SDR with Rank-1 Approx.” is the eigenvector 
approximation method described in the last section. While this 
method is already competitive in performance, the alternative 
“SDR, with Randomization” is even more promising. The notion 
of randomization will be discussed in the section “Ran-
domization and Provable Approximation Accuracies.” 

Next, we evaluate the computational complexities of the 
various MIMO detectors. The results are plotted in Figure 4. Of 
particular interest is the comparison between SDR and opti-
mal sphere decoding. We see that SDR maintains a polynomi-
al-time complexity with respect to N. For sphere decoding, the 
complexity is attractive for small to moderate N, say N # 16, 
but it increases very significantly (exponentially) otherwise. 

We conclude this section by pointing out the current advances 
of this SDR application. In essence, the promising performance of 
SDR MIMO detection in QPSK and binary PSK (BPSK) has stimu-
lated much interest. That has resulted in endeavors to extend SDR 
MIMO detection to other constellations, such as  M-ary PSK [20] 
and M-ary QAM, [22], [23], [52]–[55]. Moreover, treatments for 
coded MIMO systems [19], [56] and fast practical implementations 
[21], [45], [57] have been considered. On another front, the 

 theoretical performance of SDR MIMO detection has been ana-
lyzed in various settings. For instance, it has been shown that SDR 
can achieve full receive diversity for BPSK [58]. Furthermore, SDR 
approximation accuracies relative to the true ML have been inves-
tigated in [59] and [60]. 

RANDOMIZATION AND PROVABLE 
APPROXIMATION ACCURACIES
Besides the eigenvector approximation method mentioned in the 
section “The Concept of SDR,” randomization is another way to 
extract an approximate QCQP solution from an SDR solution Xw. 
The intuitive ideas behind randomization are not difficult to see, 
yet the theoretical implications that follow are far from trivial—
many theoretical approximation accuracy results for SDRs are 
proven using randomization. To illustrate the main ideas, let us 
consider again the real-valued homogeneous QCQP 

 min
x[Rn        

xTCx

 s.t.      xTAi x xi bi,   i5 1, c, m. (12)

Now, let X [ Sn be an arbitrary symmetric positive semidefinite 
matrix. Consider a random vector j [ Rn drawn according to the 
Gaussian distribution with zero mean and covariance X, or 
j ,N 10, X 2  for short. The intuition of randomization lies in 
considering the following stochastic QCQP: 

 min
X[Sn, Xf0

      Ej,N10, X25jTCj6
 s.t.    Ej,N10, X25jTAij6 x i bi,   i5 1, c, m,  
 (13)

where we manipulate the covariance matrix of j so that the 
expected value of the quadratic objective is minimized and the 
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quadratic constraints are satisfied in expectation. Interestingly, 
through the simple relation X5 Ej,N10, X25jjT6,  one can see that 
the stochastic QCQP in (13) is equivalent to the SDR 

 min
X[Sn, Xf0

      Tr 1CX 2
 s.t.    Tr 1A i X 2  x i bi ,   i5 1, c, m. (14)

Thus, the stochastic QCQP interpretation of SDR in (13) provides 
us with an alternative way to generate approximate solutions to 
the QCQP (12). Indeed, after obtaining an optimal solution Xw to 
the SDP (14), we can generate a random vector j ,N 10, Xw 2  
and use it to construct an approximate solution to the QCQP (12). 
Note that the specific design of the randomization procedure is 
problem dependent. As an illustration, let us consider two repre-
sentative examples.

EXAMPLE: RANDOMIZATION 
IN BQP OR MIMO DETECTION 
For the BQP in (2) or the MIMO detection problem in (11), a typi-
cal randomization procedure is shown in “Gaussian Randomization 
Procedure for BQP.” Here, the problem dependent part lies in (15), 
where we use rounding to generate feasible points from the ran-
dom samples j,. Moreover, we repeat the random sampling L 
times and choose the one that yields the best objective. 

In the MIMO detection example in “Application: MIMO 
Detection,” we have seen that the Gaussian randomization 
procedure provides quasi-optimal bit-error-rate performance; 
see Figure 3. Here we give an additional result, plotted in 
Figure 5, that shows how the performance improves with the 
number of randomizations L. We see a significant performance 
gain from L5 1 to L5 50. The gain becomes smaller for 
L . 50, approaching a limit. This shows that randomization 
provides an effective approximation for SDR for a sufficient 
(but not excessive) number of randomizations.

EXAMPLE: RANDOMIZATION IN (3)
This example aims to geometrically illustrate how randomization 
behaves. Consider (3), restated here as 

 min
x[Rn        

xTCx

 s.t.     xTAi x $ 1,   i5 1, c, m,  (16)

where C, A1, c, Am f 0.  Recall that (16) arises in the context of 
multicast downlink transmit beamforming.

We set up a numerical example where n5 2, m5 6, and then 
generate many random points j ,N 10, Xw 2  to see how they 
distribute in space. An instance of this is shown in Figure 6. From 
the distribution of j (marked as black “ # ”), one can see that the 
covariance matrix Xw is not of rank one, but the density is higher 
over the direction of the globally optimal QCQP solutions (marked 
as green “*”). In this example, the globally optimal QCQP solu-
tions were obtained by a fine grid search on R2. Such an 
exhaustive search would be prohibitive computationally for 
general Rn. Also, note that the random samples j are not always 
feasible for (16), but we can apply a rescaling 

 x 1j 2 5 j" min
i51,c, m

jTAij
 (17)

to turn them into feasible solutions. We apply the same res-
caling to feasible j, too. The rescaled samples x 1j 2  are shown 
as red “o” in Figure 6. Remarkably, one can see that there is 
a significant amount of x 1j 2  that lie close to the optimal 
QCQP solutions. 

A practical randomization procedure for (16) is essential-
ly identical to that presented in “Gaussian Randomization 
Procedure for BQP,” except that (15) is replaced by (17). 
Such a procedure has been empirically found to provide 
promising approximations for the multicast downlink trans-
mit beamforming application and its variations, like the 
MIMO detection application. Readers are referred to [27] and 
[61] for the results. 

Although we have been using intuitions and illustrations 
to introduce the randomization approach, the approach is far 
from being just a heuristic and can in fact yield significant 
insights into the performance of SDR. Indeed, it was the idea 
of randomization that opened the gateway to a host of theo-
retically provable worst-case approximation bounds for SDR. 

GAUSSIAN RANDOMIZATION PROCEDURE FOR BQP
given an SDR solution Xw,  and a number of randomiza-

tions L.  
for ,5 1, c, L
         generate j, , N 10, Xw 2 ,  and construct a QCQP-

feasible point 
 x|,5 sgn 1j, 2 . (15)
end
determine ,w5 arg min,51, c, Lx

|
,
TCx|,.

output x̂5 x|,w  as the approximate QCQP solution. 
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These results have profound implications in applications. For 
instance, it allows one to get an idea on how well SDR could 
do if it is to be applied to a new signal processing problem. 
To give some flavor of these approximation accuracy results, 
let us first consider  (16). Let v 1x 2 5 xTCx denote the objec-
tive function, and let 

 vQP5min
x[Rn         

xTCx

 s.t.     xTAi x $ 1, i5 1, c, m

denote the optimal objective value. In [10] (see also [62]), it is 
shown that with high probability, the objective value v 1 x̂ 2  of a ran-
domized solution x̂  will satisfy 

 vQP # v 1 x̂ 2 # gvQP, (18)

where g5 27m2/p is the so-called approximation ratio. Notice 
that this ratio accommodates the worst possible problem 
instance 5C, A1, c, Am6,  and that the practical approxima-
tion accuracies can be much better. Figure 7 gives numerical 
evidence, where we show a realization of the actual approxima-

tion ratio, v 1 x̂ 2 /vQP,  for the problem instance in Figure 6. As 
shown in the figure, near optimality is attained for L $ 15. In 
the same vein, such approximation analysis lets us know how 
far the optimal SDR objective value,  denoted by 
vSDR5 Tr 1CXw 2 ,  is from the optimal QCQP value. Indeed, for 
(16) and its SDR, we can have

 vSDR # vQP # gvSDR, (19)

where g5 27m2/p is as above. 
Now, let us turn to the following class of Boolean quadratic 

maximization problems (BQP): 

 vQP5max
x[Rn      

xTCx

 s.t.    xi
25 1, i5 1, c, n,

with C f 0.  In the seminal work of Goemans and Williamson [3], 
it is shown that when Cij # 0 for all i 2 j, one has 

 gvSDR # vQP # vSDR, (20)

where g5 0.87856. In addition, if we adopt the randomization 
procedure in “Gaussian Randomization Procedure for BQP,” 
then the expected objective value of the randomized solution x̂  
will satisfy 

 gvQP # E5v 1 x̂ 2 6 # vQP (21)

with the same constant g. Although the bounds in (21) apply 
only to the expected objective value, in practice the random-
ized solution x̂  can often achieve a performance that is well 
within those bounds. 

The analysis of approximation accuracy bounds is a sophis-
ticated subject. Although it is beyond the scope of this article 
to elaborate upon the mathematics behind those analyses, we 
give a summary of some of the major approximation accuracy 
results in Tables 1 and 2. We refer the interested readers to, 
e.g., [27], for more technical insights of these results from a 
signal processing viewpoint.

EXTENSION TO MORE GENERAL CASES
For ease of exposition of the SDR idea, we have only concentrated 
on the real-valued homogeneous QCQPs in previous sections. 
Here we illustrate the wide applicability of SDR by showing how 
the same idea can be used in a number of related problems. 

INHOMOGENEOUS PROBLEMS
Consider a general inhomogeneous QCQP

 min      
x[Rn

xTCx1 2cTx

 s.t.     xTAi x1 2a i
T xx i bi,   i5 1, c, m  (22)

for some appropriate C, c, Ai, ai, bi. We have already seen in the 
section “Application: MIMO Detection” how an inhomogeneous 
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the objective.
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least squares problem can be homogenized. Following the same 
spirit, we can homogenize (22) as 

 min
x[Rn,t[R

3xT t 4 c C c
cT 0

d cx
t
d

     s.t.  t25 1,

 3xT t 4 cAi ai

aT
i 0

d cx
t
d xi bi,  i5 1, c, m,

where both the problem size and the number of constraints 
increase by one. Hence, SDR can be applied to inhomogeneous 
QCQPs by operating on their homogenized forms. 

Readers are referred to [48] and [64] for another interpreta-
tion of SDR in the inhomogeneous case. 

COMPLEX-VALUED PROBLEMS
Consider a general complex-valued homogeneous QCQP

 min
x[Cn       

x HCx

 s.t.    x HA i x xi bi ,   i5 1, c, m,  (23)

where C, A1, c, Am [ Hn, with Hn being the set of all complex 
n 3 n Hermitian matrices. Using the same SDR idea as in the 
real case, we can derive the following SDR for (23): 

 min
X[Hn     

Tr 1CX 2
 s.t.    Tr 1A i X 2 x i bi,   i5 1, c, m,

 X f 0,  (24)

where the only difference is that the problem domain now 
becomes Hn (in “A CVX code for SDR,” all you need to do is to 
change “symmetric” to “hermitian!”)

While the SDRs in the real and complex cases are devel-
oped using essentially the same technique, it should be 
noted that the two can be quite different in their approxi-
mation accuracies; see, for example, Tables 1 and 2 and the 
literature [27]. 

The current applications of complex-valued SDR lie in 
various kinds of beamforming problems [1], [15], [16], [27], 
[35], [37], [61]. Complex-valued SDR can also be used to handle 
a k-ary quadratic program 

 min
x[Cn      

x HCx

 s.t.  xi [ 51, e j2p/k, c, e j2p1k212/k6, i5 1, c, n,  (25)

where k $ 2 is a given integer. Applications of the k-ary qua-
dratic program include M-ary PSK MIMO detection [20] and 
coded waveform designs in radar [33]. Problem (25) can be 
approximated by the following SDR: 

 min
X[Hn      

Tr 1CX 2
 s.t.     X f 0,  Xii5 1,  i5 1, c, n.  (26)

Curiously, while the SDR in (26) does not utilize the constella-
tion size k, it can yield satisfactory approximations, both practi-
cally [20], [33] and theoretically [8], [9].

SEPARABLE QCQPS

Consider a QCQP of the form

 min
x1, c, xk[Cn

     a
k

i51
x i

HCi xi

 s.t.    a
k

l51
 x l

HA i, l x l x i bi,   i5 1, c, m.  (27)

Problem (27) is called a separable QCQP. A relevant application 
for separable QCQPs is the unicast downlink transmit beam-
forming problem [65]; see [1] for the problem description. 

Let Xi5 xi xi
H  for i5 1, c, k.  By relaxing the rank con-

straint on each Xi, we obtain the following SDR of (27): 

 min
X1, c, Xk[Hn

     a
k

i51
Tr 1Ci Xi 2

 s.t.   a
k

l51
Tr 1Ai, l Xl 2 xi  bi,   i5 1, c, m,

 X1 f 0, c, Xk f 0.  (28)

[TABLE 1] KNOWN APPROXIMATION ACCURACIES OF SDR FOR QUADRATIC MINIMIZATION PROBLEMS.

PROBLEM 
APPROX. ACCURACY g;  SEE (18) AND (19) 
FOR  DEFINITION REFERENCES 

 min
x[C n

      x
HCx

 s.t.   xHA i x $ 1, i5 1, c, m

WHERE A1, c, Am f 0.

 g5 8 m .

IF THE PROBLEM IS REDUCED TO THE REAL-VALUED CASE, THEN

 g5
27 m2

p
.

LUO-SIDIROPOULOS-TSENG-ZHANG [10]; 
SEE ALSO SO-YE-ZHANG [62]. 
RELEVANT APPLICATIONS: [61]. 

MIMO DETECTION

 min
x[R

n       
7 y–Hx 722

 s.t.    xi
25 1, i5 1, c, n

WHERE y5Hs1 v;  H [ Cn3n  HAS I.I.D. 
STANDARD COMPLEX GAUSSIAN ENTRIES; 
si

25 1  FOR i5 1, c, n;  AND v [ C
n  HAS 

I.I.D. COMPLEX MEAN ZERO GAUSSIAN 
ENTRIES WITH VARIANCE s 2.

FOR s2 $ 60n  (WHICH CORRESPONDS TO THE LOW SIGNAL-
TO-NOISE RATIO (SNR) REGION), WITH PROBABILITY AT LEAST 
123exp 12n/6 2 ,
 g #

11
2

.

FOR s25O 11 2  (WHICH CORRESPONDS TO THE HIGH SNR 
REGION), WITH PROBABILITY AT LEAST 12exp 12O 1n 2 2 ,

g5 1,
I.E., THE SDR IS TIGHT.

KISIALIOU-LUO [59], SO-YE [60]. 
EXTENSIONS: SO-YE [60]. 
RELATED: JALDÉN-OTTERSTEN [58]. 
RELEVANT APPLICATIONS: [17]–[20], 
[22], [23]. 
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APPLICATION: TRANSMIT B1 SHIM IN MAGNETIC 
RESONANCE IMAGING 
At this point, readers may have the following concern: since SDR 
is an approximation method, as an alternative we may also 
choose to approximate a nonconvex QCQP by an available non-
linear programming method (NPM) (e.g., sequential quadratic 
programming, available in the MATLAB Optimization Toolbox). 
Hence, it is natural to ask which method is better. The interest-
ing argument is that they complement each other, instead of 
competing. Indeed, the quality of NPMs depends on the starting 
point, and the missing piece is generally in securing a reliable 
(or a “good enough”) starting point. Thus, one can consider a 
two-stage approach, in which SDR is used to provide a starting 
point for an NLM. In particular, to SDR, nonlinear programming 
can provide local refinement of the solution, while to NLMs SDR 
can be used to provide a good starting point. This two-stage 

approach has not only been proven to be viable in practice, but is 
also promising in performance [28], [37]. 

In this example, we demonstrate the effectiveness of the 
two-stage approach. The application involved is transmit B1 
shimming in magnetic resonance imaging (MRI) [37]. An 
illustration is shown in Figure 8 to help us explain the prob-
lem. A magnetic field, specifically a B1 field, is generated by an 
array of transmit RF coils. The ideal situation would be that 
the B1 field is spatially uniform across the load (like a human 
head). Unfortunately, this is usually not the case. The complex 
interactions between the magnetic field and the loaded tissues 
often result in strong inhomogeneity (or spatial nonunifor-
mity) across the load. The goal of transmit B1 shimming is to 
design the transmit amplitudes and phases of the RF coils 
such that the resultant B1 map (or the MR image) is as uni-
form as possible. 

The transmit B1 shimming problem is mathematically for-
mulated as follows. Let x [ Cn be the transmit vector of the RF 
coil array, where n is the number of RF coils and xi is a complex 
variable characterizing the transmit amplitude and phase of the 
ith RF coil. Denote by ai [ Cn, i5 1, c, m,  the field response 
from the array to the ith pixel; that is to say, the ith pixel 
receives a B1 field of magnitude |ai

Tx|. Our problem then is to 
minimize the worst-case field magnitude difference 

 min
x[Cn

 max
i51,c, m

0 |a i
Tx|22 b2 0

 s.t. x HGx # r.  (29)

[TABLE 2] KNOWN APPROXIMATION ACCURACIES OF SDR FOR QUADRATIC MAXIMIZATION PROBLEMS.

PROBLEM
APPROXIMATION ACCURACY g;  SEE (20) AND (21) FOR 
DEFINITION REFERENCES 

BOOLEAN QP

 max    
x[Rn

xTCx

 s.t.     xi
25 1, i5 1, c, n

g5 •0.87856, C f 0, Cij # 0 4i 2 j
2/p . 0.63661, C f 0
1 1opt. 2 , Cij $0,4i 2 j

GOEMANS-WILLIAMSON [3], 
NESTEROV [4], ZHANG [7]. 
RELEVANT APPLICATIONS: [24]–[26]. 

COMPLEX K-ARY QP

 max   
x[Cn

x HCx

 s.t.   xi [ 51, v, c, vk216,
  i5 1, c, n ,

WHERE v 5 e j2p/k,  AND k . 1  IS AN INTEGER.

FOR C f 0,

 g5
1ksin 1p/k 2 22

4p
.

E.G., g5 0.7458  FOR k5 8,  g5 0.7754  FOR k5 16.

ZHANG-HUANG [8], 
SO-ZHANG-YE [9]. 
RELEVANT APPLICATIONS: [33]. 

COMPLEX CONSTANT-MODULUS QP

 max    
x[C n

xHCx

 s.t.    |xi |
25 1, i5 1, c, n

FOR C f 0,

 g5p/45 0.7854.

REMARK: COINCIDE WITH COMPLEX K-ARY QP AS k S `.

ZHANG-HUANG [8], 
SO-ZHANG-YE [9]. 

 max    
x[Cn

xHCx

 s.t.   1 |x1|
2, c,|xn|

2 2 [ F ,

WHERE F ( Rn  IS A CLOSED CONVEX SET. 

THE SAME APPROX. RATIO AS IN COMPLEX CONSTANT-
MODULUS QP; I.E., g5p/4  FOR C f 0.
IF THE PROBLEM IS REDUCED TO THE REAL-VALUED CASE, 
THEN THE APPROX. RATIO RESULTS ARE THE SAME AS THOSE 
IN BOOLEAN QP. 

YE [5], ZHANG [7]. 

 max
x[Rn    

xTCx

 s.t.    xTAi x # 1, i5 1, c, m

WHERE A1 , c,  Am f 0.

FOR ANY C [ Sn,

 g5
1

2ln 12mm 2
WHERE m5min 5m, max i rank 1Ai 2 6.

NEMIROVSKI-ROOS-TERLAKY [6]. 
EXTENSIONS: LUO-SIDIROPOULOS-
TSENG-ZHANG [10], SO-YE-ZHANG 
[62], AND ZHANG-SO [63]. 

RF Coils

......Load

[FIG8] An MRI illustration.
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Here, m is the total number of pixels, b . 0 is the desired pixel 
value (which is uniform over all pixels), x HGx  represents the 
average specific absorption rate (SAR), in which G is composed 
of the complex-valued E field coefficients and of the tissue con-
ductivity and mass density, and r is a prespecified SAR limit. 

Let us consider an SDR of (29), which, by following the SDR 
principles mentioned in previous sections, is given by 

 min
X[Hn

 max
i51,c, m

0 Tr 1a*a i
TX 2 2 b2 0

 s.t. X f 0, Tr 1GX 2 # r.  (30)

Note that the SDR problem in (30) can be reformulated as an 
SDP 

 min
t[R, X[Hn

t

 s.t. 2 t # Tr 1a*a i
TX 2 2 b2 # t,    i5 1, c, m,

 X f 0, Tr 1GX 2 # r.  (31)

A randomization procedure reminiscent of that given in 
“Gaussian Randomization Procedure for BQP” can be used to 
generate an approximate solution to the original problem in 
(29); see [37] for the algorithm description.

A simulation result for transmit B1 shimming is shown in 
Figure 9. We employ a 16-element RF strip line coil array, 
operating at 7 Tesla and loaded with a human head model. 
Figure 9(a) shows a B1 map obtained by a simple, nonopti-
mized transmit weight x5 3 1, e2p/16, c, e30p/16 4T.  From that 
figure and its respective objective value (provided below the 
figure), we can see that the resultant B1 map is not uniform 
enough. Figure 9(d) and (e) show the results for SDR random-
ized solutions, where the number of randomizations is 
L5 200. Randomization would lead to variations in different 
runs or realizations. Due to space limitations, we only display 
two realizations in Figure 9(d) and (e). One can observe that 
there are some differences with the B1 maps of the two realiza-
tions, but their objective values are quite similar. The random-
ized SDR solutions also show improvements in uniformity 

when compared to the nonoptimized transmit weight in 
Figure 9(a). Now, let us consider the two-stage approach 
 mentioned in the beginning of this section. The results are 
shown in Figure 9(f) and (g). We can see further improve-
ments with the resultant B1 maps and objective values. This 
shows that SDR can provide reliable initializations to NPMs. 

One may also be interested in seeing how an NPM perform 
without the aid of SDR. To do this comparison, we randomly 
generate a starting point for the NPM by an independent and 
identically distributed (i.i.d.) Gaussian distribution. However, 
for fairness of comparison to SDR, we generate L i.i.d. Gaussian 
random points (the same L as in randomization in SDR) and set 
the starting point to be the one that yields the best objective. 
Two B1 map realizations of such randomly initialized NPM are 
shown in Figure 9(b) and (c). We can see that the performance 
shows significant variations from one realization to another (it 
could be good, and it could be bad), making the final solution 
fidelity difficult to say. In [37], some Monte Carlo simulations 
are provided to further support our observations here. 

RANK REDUCTION IN SDP
As the readers may have noticed by now, one of the recurring 
themes in the SDR methodology is the following. First, one 
formulates a given hard optimization problem as a rank- 
constrained SDP. Then, one removes the rank constraint to 
obtain an SDP. This is vividly illustrated as we pass from the 
QCQP (4) to the equivalent rank-constrained SDP (5), and 
finally to the SDR (6). Now, if the algorithm we use to solve 
the SDP returns a solution whose rank satisfies the original 
rank constraint, then that solution will also be optimal for the 
original problem. As the applications we consider typically 
require that the solution matrix has low rank (e.g., the solu-
tion matrix in (5) must have rank one), it is natural to ask 
whether standard interior-point algorithms for solving SDPs 
will return a low-rank solution or not. Unfortunately, the 
answer is no in general. Specifically, it has been shown [66] 
that standard interior-point algorithms for solving SDPs will 
always return a solution whose rank is maximal among all 
optimal solutions. Thus, either the problem at hand possesses 

(a) (b) (c) (d) (e) (f) (g)

obj. value =

24.56

obj. value =

3.364

obj. value =

6.330

obj. value =

6.049

obj. value =

6.009

obj. value =

3.244

obj. value =

3.310

5

0

2.5

[FIG9] B1 maps of various optimization methods: (a) Without optimization, (b) nonlinear programming with random starting point, 
Realization 1; (c) nonlinear programming with random starting point, Realization 2; (d) SDR with randomization, Realization 1; (e) SDR 
with randomization, Realization 2; (f)  two-stage optimized SDR with randomization and nonlinear programming, Realization 1; (g) 
two-stage optimized SDR with randomization plus nonlinear programming, Realization 2. 
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some very special structure, 
or we have to be somewhat 
lucky to obtain a low-rank 
SDP solution. On the other 
hand, not all is lost. It turns 
out that if an SDP with an 
n 3 n matrix  variable and m 
linear constraints is feasible, then there always exists a solu-
tion whose rank is bounded above by O 1"m 2 . Spe cifically, 
Shapiro [67], and later Barvinok [68] and Pataki [69] indepen-
dently showed that if the SDP (6) is feasible, then there exists 
a solution Xw to (6) such that 

 
rank 1Xw 2 1rank 1Xw 2 1 1 2

2
# m, (32)

or equivalently, rank 1Xw 2 # : 1"8m1 12 1 2 /2;.  Moreover, 
such a solution can be found efficiently [69]. The Shapiro-
Barvinok-Pataki (SBP) result has many interesting consequences. 
For instance, when m # 2, we have rank 1Xw 2 # 1 whenever (6) is 
feasible. This implies that the SDP (6) is equivalent to the rank-con-
strained SDP (5). In particular, we can obtain an optimal solution to 
the seemingly difficult (4) simply by solving an SDP. 

As it turns out, a similar SDR rank result holds for the com-
plex-valued homogeneous QCQP (23) and the separable QCQP 
(27). Specifically, Huang and Palomar [16] showed that if the 
SDR (24) of the complex-valued homogeneous QCQP (23) is fea-
sible, then there exists a solution Xw to (24) such that 
rank 1Xw 2 #"m. On the other hand, consider the SDR (28) of 
the complex-valued separable QCQP (27). Suppose that it is fea-
sible. Then, as shown in [16], there exists a solution 5Xi

w6i51
k  to 

(28) whose ranks satisfy 

 a
k

i51
rank 1Xi

w 2 2 # m.

In the case of a real-valued separable QCQP, the rank condition 
is given by 

 a
k

i51

rank 1Xi
w 2 1rank 1Xi

w 2 1 1 2
2

# m.

To summarize, for a real-valued (respectively complex valued) 
homogeneous QCQP with two (respectively three) constraints 
or less, SDR is not just a relaxation. It is tight, i.e., solving the 
SDR is equivalent to solving the original QCQP. 

For a homogeneous separable QCQP (27), suppose that 
none of the solution 5Xi

w6i51
k  to the SDR (28) satisfies Xi

w5 0  
for some i. Then, the SDR is tight if m # k1 2 in the complex 
case; and if m # k1 1 in the real case.

An important application of the above result is in establish-
ing the tightness of certain SDR for the unicast downlink 
transmit beamforming problem; see [1], [16], and [27] for fur-
ther discussions.

Before we proceed further, several remarks are in order. 

The SBP result is con-1) 
cerned with the existence of 
low-rank solutions to an 
SDP,  and we derive  the 
tightness of various SDRs as 
corollaries (by specializing 
the SBP result to the rank 

one case). However, there are other, more direct, 
approaches for proving tightness of SDRs of various 
QCQPs; see, e.g., [12]–[14], [70], and [71]. Most of 
these approaches rely on so-called rank-one decomposi-
tion theorems, which allow one to extract an optimal 
QCQP solution from the SDR solution, provided that 
the number of constraints in the QCQP is not too 
large—say, at most three for the complex-valued homo-
geneous QCQP. Recently, Ai et al. [71] have proven 
another rank-one decomposition theorem and used it 
to show that the SDRs of a large class of complex-val-
ued homogeneous QCQPs with four constraints are in 
fact tight. The interested readers may find the MATLAB 
implementations of the algorithms described in [71] at 
http://www.se.cuhk.edu.hk/~ywhuang/dcmp/paper.
html. We note that the aforementioned tightness 
results have already found many applications in signal 
processing and communications; see, e.g., [32], [33], 
[40], [41], and [71]–[75].

It is known [68] that the rank bound in (32) cannot be 2) 
improved in general. Specifically, there exist SDPs with m 
constraints in which every matrix that satisfies all the con-
straints must have rank of order at least "m. However, if 
one allows the linear constraints in a given SDP to be satis-
fied only approximately, then it is possible to find a solution 
matrix whose rank is much smaller than O 1"m 2 . We refer 
the readers to [62] for details. 

The results mentioned in this section merely provide 3) 
sufficient conditions for SDR tightness. As such, there 
are cases in which SDR tightness can be attained under 
different conditions. For example, if each Ai follows the 
structure 

 Ai5 ai ai
H, ai5 3 1, e jf i, c, e j 1n212fi 4T

for some angle fi [ 30, 2p 2 ,  then a rank-one solution 
exists for SDR for any m [15]. Another example is in MIMO 
detection, where SDR tightness can be shown to occur with 
high probability [57], [59], [60], [76]. 

APPLICATION: SENSOR NETWORK LOCALIZATION
Let us now consider another practical problem to which the 
SDR technique can be applied, namely, the sensor network 
localization (SNL) problem. Although the SNL problem is 
computationally intractable, it can be relaxed to an SDP. 
Moreover, simulation results showed that it can produce high-
quality solutions. Before we delve into the details, let us first 
briefly describe and motivate the SNL problem. 

FOR A REAL-VALUED (RESPECTIVELY
COMPLEX-VALUED) HOMOGENEOUS

QCQP WITH TWO (RESPECTIVELY THREE) 
CONSTRAINTS OR LESS, SDR IS NOT JUST 

A RELAXATION. IT IS IN FACT TIGHT.
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In recent years, the deployment of large-scale wireless 
sensor networks has become increasingly common. These 
networks are often used to collect location-dependent data, 
such as motion at various points of a monitored area, and 
temperature at various locations of a habitat. In most appli-
cations, however, the sensors are deployed in an ad hoc fash-
ion. Moreover, it is often impractical or infeasible to equip 
every sensor with a location device (such as a global position-
ing system). Thus, the actual locations of individual sensors 
may not be known, and we need to deduce them from some 
other information. One common approach is to use the so-
called communication graph of the sensors. Specifically, con-
sider a graph in which the nodes represent sensors, and an 
edge between two nodes indicates that the corresponding 
sensors can communicate with each other. We assume that 
the distance between two sensors can be measured whenever 
they can communicate with each other. This can be achieved 
using, e.g., the arrival time or difference in arrival time of 
the signal, the received signal strength, or angle of arrival 
measurements (see, e.g., [77] and [78] and references there-
in). To add some flexibility to the model, we allow for the 
possibility that the locations of some of the sensors are given. 
These sensors will be referred to as anchors in the sequel. 

Under the above setting, our goal is to determine the coor-
dinates of the sensors in, say R2, so that the distances induced 
by those coordinates match the measured distances. Formally, 
let Vs5 51, c, n6  and Va5 5n1 1, c, n1m6  be the sets 
of sensors and anchors, respectively. Let Ess and Esa be the sets 
of sensor-sensor and sensor-anchor edges, respectively. To fix 
ideas and keep our exposition simple, suppose for now that the 
measured distances 5dik  : 1 i, k 2 [ Ess6  and 5dik  : 1 i, k 2 [ Esa6  
are noise free. Then, the SNL problem becomes that of finding 
x1, c, xn [ R2  such that 

 ||xi2 xk||
25 dik

2 , 1 i, k 2 [ Ess,

 ||ai2 xk||
25 dik

2 , 1 i, k 2 [ Esa.  (33)

In general, (33) is difficult to solve, as the quadratic con-
straints in it are nonconvex. Indeed, the problem of determin-
ing the feasibility of (33) is NP-hard [79]. However, one can 
derive a computationally efficient SDR of (33) as follows. First, 
observe that 

 ||xi2 xk||
25 xi

Txi2 2xi
Txk1 xk

Txk.

In particular, we see that ||xi2 xk||
2 is linear in the inner prod-

ucts xi
Txi, xi

Txk,  and xk
Txk. Hence, we may write

 ||xi2 xk||
25 1ei2 ek 2TXTX 1ei2 ek 2 5 Tr 1Eik XTX 2 ,

where ei [ Rn  i s  the i th unit  vector,  Eik5 1ei2 ek 21ei2 ek 2T [ Sn,  and X is a 2 3 n matrix whose  ith column is 
xi. In a similar fashion, we have 

 ||ai2 xk||
25 ai

Tai2 2ai
Txk1 xk

T xk.

Although the term ai
Txk is linear only in xk, we may homoge-

nize it and write 

 ||ai2 xk||
2 5 3ai

T ek
T 4 c I2 X

XT XTX
d cai

ek
d  5 Tr 1Mik Z 2 ,

where 

 Mik5 cai

ek
d 3ai

T ek
T 4

and 

 Z5 c I2 X
XT XTX

d 5 c I2

XT d 3I2 X 4. (34)

Now, observe that Z [ Sn12 as given in (34) is a rank-two 
positive semidefinite matrix whose upper left 2 3 2 block is 
constrained to be an identity matrix. The latter can be 
expressed as three linear constraints (i.e., linear in the entries 
of Z). Moreover, using the Schur complement, it is not hard 
to show that any rank-two positive semidefinite matrix 
Z [ Sn12 whose upper left 2 3 2 block is an identity matrix 
must have the form given in (34) for some X [ R23n. Thus, 
upon letting

 Mik5 c0 0
0 Eik

d ,
we see that (33) is equivalent to the following rank constrained 
SDP: 

 find Z
 s.t.     Tr 1Mik Z 2 5 dik

2,   1 i, k 2 [ Ess,

 Tr 1Mik Z 2 5 dik
2 ,    1 i, k 2  [ Esa,

 Z1:2,1:25 I2,

 Z f 0,   rank 1Z 2 5 2.  (35)

In particular, by dropping the rank constraint from (35), we 
obtain an SDR of (33). 

Now, if we solve the SDR of (33) and obtain a rank r  solution 
Z,  then we can extract from it a set of r -dimensional coordi-
nates for the sensors such that those coordinates satisfy the dis-
tance constraints [30]. In fact, if the solution Z  is of rank two, 
then we can extract the two-dimensional coordinates of the sen-
sors directly from the X  portion of the matrix Z  [see (34)]. For 
other interesting theoretical properties of the above SDR, we 
refer the readers to [28], [30], and [80]. 

So far our discussion has focused on the case where the mea-
sured distances are noise free. However, in practice, the mea-
sured distances are usually corrupted by noise (say, by an 
additive Gaussian noise). In this case, we are interested in find-
ing a maximum likelihood estimate (MLE) of the sensors’ coor-
dinates. Although the MLE problem is difficult to solve in 
general, one can derive an SDR of it using techniques similar to 
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those introduced in this section. We refer the readers to [28] 
and [31] for details. 

To demonstrate the power of the SDR approach, we applied 
it to a randomly generated network of 45  sensors and five 
anchors over the unit square 320.5, 0.5 42.  The connectivity of 
the network is determined by the so-called unit disk graph 
model. Specifically, we assume that a pair of devices can com-
municate with each other if the distance between them is at 
most 0.3.  Furthermore, we assume that the measured distances 
are corrupted by a Gaussian noise with small variance, say 0.01.

In Figure 10(a) we show the positions of the sensors as com-
puted by the SDP, as well as the trajectories of a gradient search 
procedure after initializing it with the SDP solution. We use cir-
cles “°” to denote the true positions of the sensors and diamonds 
“ e ” to denote the positions of the anchors. The initial positions 
of the sensors as computed by the SDP are denoted by stars “* ,” 

and the tail end of a trajectory gives the computed position of a 
sensor after 50 iterations of the gradient search procedure. As 
can be seen from the figure, the final computed positions of the 
sensors are very close to the true positions. For the purpose of 
comparison and to demonstrate the high quality of the SDP solu-
tion, we show in Figure 10(b) the trajectories of the gradient 
search procedure when it is initialized by a random starting 
point. As can be seen from the figure, even after 50 iterations, 
the computed positions of the sensors are still nowhere close to 
the true positions. 

Before we leave this section, we should mention that the 
SDR technique can also be applied to the source localization 
problem (see, e.g., [77] and [78]), which is well studied in the 
signal processing community and may be considered as a spe-
cial case of the sensor network localization problem. In that 
problem, one is given noisy distance measurements from one 
sensor to a number of anchors, and the goal is to determine the 
MLE of the sensor position. For various SDR-based approaches 
to this problem, we refer the readers to [31], [38], and [39]. 

CONCLUSION AND DISCUSSION
In this article, we have provided general, comprehensive coverage 
of the SDR technique, from its practical deployments and scope 
of applicability to key theoretical results. We have also showcased 
several representative applications, namely MIMO detection, B1  
shimming in MRI, and sensor network localization. Another 
important application, namely downlink transmit beamforming, 
is described in [1]. Due to space limitations, we are unable to 
cover many other beautiful applications of the SDR technique, 
although we have done our best to illustrate the key intuitive 
ideas that resulted in those applications. We hope that this intro-
ductory article will serve as a good starting point for readers who 
would like to apply the SDR technique to their applications, and 
to locate specific references either in applications or theory. 
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